

Artificial Intelligence in Network Analytics for Supply Chain Optimization: Forecasting Demand and Preventing Disruptions

Karieren Oghenemarho* Anthony, Oluwaseni Adeyinka, Sunday Balogun, Oluwadamilare Bankole

¹ Center of Information and Communication Science (CICS), College of Communication, Information & Media, Ball State University, Muncie, IN, 47304

* Correspondence: oghenemarho.karieren@bsu.edu

Abstract: The current supply chain operates in a turbulent, unpredictable environment characterized by volatility, uncertainty, complexity, and ambiguity (VUCA), and thus requires a higher level of analytical skills than conventional statistical techniques. The objective of this article is to merge artificial intelligence into supply chain network analytics, focusing primarily on demand prediction and disruption reduction. The article is based on present-day documentation and technological implementations, which makes it clear how the machine learning algorithms used, namely Long Short-Term Memory (LSTM) networks and Random Forests, respectively, succeed in better forecasting and offer predictive risk management. The article proposes a model of AI-assisting network analytics and investigates consequences for resilience and operational efficiency

Academic Editor(s): Juan Dempere

Received: 6 December 2025

Revised: 26 January 2026

Accepted: 31 January 2026

Published: date: 31 January 2026

Citation: Anthony, K. O., Adeyinka, O., Balogun, S., & Bankole, O. (2026,

January 31). *Artificial intelligence in network analytics for supply chain optimization: Forecasting demand and preventing disruptions*. *AI Business Review*, 2(1).

<https://doi.org/10.64044/a01sfj03>

Copyright: © 2026 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

1. Introduction

In recent years, the global supply chain ecosystem has changed from linear chain to complex, interconnected networks. The need for globalization, personalized consumer needs, and recent exposure to major disruptions like the COVID-19 pandemic and geopolitical instability have all sped up this change (Ivanov et al., 2021). In this situation, supply chain optimization is no longer just about cutting costs; it is now about being strong and flexible. Conventional approaches to supply chain management (SCM), which predominantly depend on historical data and linear optimization models, frequently do not account for the theoretical characteristics of contemporary demand patterns and the ripple effect of network disruptions (Ivanov et al., 2019).

Network analytics has become a key domain to tackle these issues, conceptualizing the supply chain as a graph comprising nodes (suppliers, manufacturers, distributors) and edges (logistics routes, information flows). However, the amount of data that these networks generate is enormous for people to analyze. Artificial Intelligence (AI), particularly its subfields like Machine Learning (ML) and Deep Learning (DL), provides the computational capacity to analyze diverse big data, detect non-linear patterns, and automate decision-making processes (Jahin et al., 2023).

This study focuses on two fundamental components of supply chain management optimization: demand forecasting and disruption mitigation. Accurate demand forecasting reduces the bullwhip effect, and proactive disruption prevention keeps the business running. The aim of this paper is to examine specific AI methodologies that improve network analytics, assess their effectiveness in practical applications, and suggest a framework for their incorporation. Following this introduction, section 2 reviews the existing literature. Section 3 describes how artificial intelligence can be used to predict demand. Section 4 addresses ways to control and reduce disruptions. Section 5 describes a structure for integration, and Section 6 concludes with possible areas for future research.

2. Literature Review

2.1 Traditional vs. AI-Driven Approaches

Traditionally, supply chain analytics is dependent on statistical methods involving time series examination, like Moving Averages and Exponential Smoothing (ARIMA). These models work well in stable settings, but they often have difficulty with non-linear data and external factors such as the weather conditions or social trends (Makridakis et al., 2018). On the other hand, AI-driven methods use Big Data Analytics (BDA) to take in both structured and unstructured data. (Dubey et al., 2018) emphasized that BDA capability use a substantial positive influence on supply chain agility and performance. AI models learn from new data, which makes them more accurate over time without having to be manually recalibrated. This is different from traditional models.

2.2 Key AI Techniques in Network Analytics

The literature present various dominant AI methodologies in SCM. Many people use machine learning (ML) algorithms like Support Vector Machines (SVM) and Random Forests for classification and regression tasks. Deep Learning (DL) and Neural Networks have become more popular in recent years because they can model complicated relationships. (Wang et al., 2016) showed that neural networks do a much better job than traditional methods at capturing how supply chains work. Additionally, Graph Neural Networks (GNNs) are emerging as a powerful tool for network analytics because they let businesses model the connections between supply chain nodes in a clear way.

2.3 Recent Advances in Demand Forecasting

Recent studies underscore the transition from point forecasting to probabilistic forecasting through the application of AI. Deep learning architectures, notably Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks, have emerged as the leading methodologies for time-series forecasting, owing to their capacity to preserve long-term dependencies within data sequences (Carboneau et al., 2008; Akter & Wamba, 2019). (Nikolopoulos et al., 2021) suggest that AI can complement human to make better decisions by modifying forecasts based on real-time anomalies during crises.

2.4 Gap Identification

While there is a considerable body of literature on forecasting and risk management individually, there is still a gap in research that explores the synergy between these two through network analytics. Most research concentrates on individual nodes instead of the comprehensive network topology. This paper fills this gap by exploring how AI in network analytics can improve forecasting and simultaneously prevents disruptions.

3. AI Methods for Predicting Demand in Supply Chains

3.1 Basic Network Analytics

In terms of demand forecasting, network analytics means understanding how demand signals move through the different levels of the supply chain. It goes beyond just looking at sales history to look at downstream point-of-sale (POS) data, distributor inventory levels, or even prices from competitors.

3.2 Specific AI Algorithms

There are several core algorithms that are important for modern forecasting, which include:

- I. **Long Short-Term Memory (LSTM):** This is a kind of RNN that is made to fix the problem of the vanishing gradient. LSTMs work well for SCM because demand changes with the seasons and is based on lagging indicators. Research indicates that LSTMs surpass ARIMA in volatile markets by identifying patterns across extended timeframes (Helmini et al., 2019).
- II. **Random Forests and Gradient Boosting (XGBoost):** They are two types of ensemble methods that use more than one decision tree to make a prediction. They are very good at figuring out which variables (like price, promotion, and weather) are driving demand (Kraus et al., 2020).
- III. **Hybrid Models:** These days, hybrid models that mix ARIMA with Artificial Neural Networks (ANNs) to find both linear and non-linear patterns in demand data are becoming more popular.

Feature	Traditional (e.g., ARIMA, Moving Avg)	Machine Learning (e.g., Random Forest)	Deep Learning (e.g., LSTM/RNN)
Data Handling	Linear, univariate data (Historical sales only)	Structured, multivariate data (Price, Promotions)	Unstructured, massive datasets (Social sentiment, Weather)
Pattern Recognition	Seasonality and Trends	Non-linear relationships	Long-term dependencies & Complex sequences
Computational Cost	Low	Moderate	High (requires GPU acceleration)
Interpretability	High (Easy to explain)	Moderate (Feature importance visible)	Low ("Black Box" nature)

MAPE (Error Rate)	20% - 30% (typical)	10% - 15%	< 8% - 10%
------------------------------	---------------------	-----------	------------

Note: Adapted from a comparative analysis of forecasting methodologies (Helmini et al., 2019). MAPE = Mean Absolute Percentage Error.

3.3 Data Sources and Preprocessing

AI forecasting needs a lot of data. In addition to past sales, inputs include macroeconomic indicators, Google Trends data, social media sentiment, and weather forecasts. It is very important to preprocess the data by normalizing it and filling in any missing values. Data integration from Tier 1 and Tier 2 suppliers is necessary for network analytics to predict supply constraints that could make it hard to meet demand.

3.4 Forecasting Accuracy and Limitations

In different case studies, AI implementation has shown that it can cut forecasting error by 20–50% (measured by MAPE or RMSE) (Chase Jr, 2014; Ugbebor et al., 2024). However, there are still limitations. Supply chain managers can't trust the output of "black box" models like Deep Learning because they lack interpretability. Furthermore, AI models need a lot of training data, and they may have difficulty with "cold starts" for new products that don't have any historical data (Choi et al., 2018).

4. AI-Powered Risk Management and Prevention of Disruption

4.1 Types of Supply Chain Disruptions

There are two main operational risks that are associated with disruption in the supply network. Firstly, there are machine breakdowns and lead time variance, and secondly, there are natural disasters, pandemics, and strikes. The "Ripple Effect" shows how a disruption at a Tier 3 supplier can spread downstream and make things worse (Ivanov & Review, 2020).

4.2 Using Predictive Analytics for Early Warning

AI changes risk management from being reactive to being proactive. Predictive analytics uses data from past disruptions and real-time monitoring to early identify signs that something might go wrong. For example, Bayesian Networks can use financial reports and news from the market to figure out how likely it is that a supplier will go out of business. Finding out the "Time-to-Recovery" (TTR) and "Time-to-Survive" (TTS) for different nodes is an important way that AI simulation helps measure risk (Shen et al., 2019).

4.3 Network Resilience Modeling and Digital Twins

The Digital Supply Chain Twin (DSCT), which is a digital copy of the physical network, is a big step forward in prevention. Companies can use AI on the DSCT to run stress tests, like "What if the Port of Shanghai closes?" (Ivanov et al., 2021) assert that the integration of DSCTs with AI facilitates real-time network reconfiguration, enabling dynamic logistics rerouting or supplier switching prior to disruptions affecting the manufacturing floor.

4.4 Real-Time Monitoring and Anomaly Detection

Anomaly detection uses unsupervised learning algorithms like K-Means clustering or Autoencoders. These systems keep an eye on data streams from IoT sensors that are moving or being made. The AI sends an alert if a parameter (like temperature in a cold chain or vibration in logistics) is different from the normal cluster. This ability is very important for avoiding problems with quality and logistics (Dubey et al., 2019).

5. Framework for Integration and Things to Think About When Implementing

5.1 The Relationship Between Forecasting and Prevention

Forecasting and preventing disruptions should not be kept separate. An integrated framework uses a feedback loop: accurate demand forecasts help set up inventory buffers (risk mitigation), and the chances of a disruption help set the confidence intervals for meeting demand. If AI, for instance, predicts a high risk of logistics delay (prevention), the system should automatically change the lead time inputs in the demand planning module.

5.2 Requirements for Data Infrastructure

To work, you need a strong infrastructure that can handle Big Data. This usually means:

- **Cloud computing:** For storage and processing power that can grow.
- **IoT Connectivity:** To get network data in real time.
- **Big Data Analytics Capability (BDAC):** The ability of an organization to handle data. Wamba (2017) stresses that BDAC is a good way to guess how well a company will do.

5.3 Important Success Factors and Challenges

- I. **Data Quality:** The "Garbage In, Garbage Out" rule applies to data quality. AI predictions are wrong when suppliers give them wrong data.
- II. **Interoperability:** Different ERP systems are used by different parts of the supply chain. More and more people are saying that blockchain technology could be the answer to making a reliable, unchangeable data layer for AI to look at (Saberi et al., 2019).
- III. **Talent Gap:** There is a lack of experts who are proficient in both data science and supply chain management dynamics.
- IV. **Cost:** Small and medium-sized businesses (SMEs) may not be able to afford the high initial investment in AI infrastructure.

6. Conclusion

This paper demonstrates that AI in network analytics significantly enhances supply chain efficiency. DL and LSTM models are better at predicting demand because they can handle outside factors and non-linearities. AI lets you see things in real time and run Digital Twins to stop problems before they happen. When these skills work together, they can

create a strong, "self-driving" supply chain. Better forecasting means lower costs for holding inventory, which means a higher return on investment (ROI). This is because it stops stockouts from costing sales and makes shipping faster and cheaper during disruptions. AI lets businesses move from a "Just-in-Time" model to a "Just-in-Case" capability without adding to their stock (Ivanov, 2024).

Future studies should concentrate on:

- I. Explainable AI (XAI): Creating models that give reasons for their predictions to make managers more likely to trust them.
- II. Federated Learning: lets supply chain partners train shared AI models without sharing private raw data, which keeps privacy intact.
- III. Edge computing: processing AI algorithms on local IoT devices to speed up decision-making.

As supply networks get more complicated, using Artificial Intelligence in network analytics will go from being a competitive edge to being a need for operations.

References

1. Akter, S., Wamba, S.F. Big data and disaster management: a systematic review and agenda for future research. *Ann Oper Res* 283, 939–959 (2019). <https://doi.org/10.1007/s10479-017-2584-2>
2. Carbonneau, R., Laframboise, K., & Vahidov, R. (2008). Application of machine learning techniques for supply chain demand forecasting. *European journal of operational research*, 184(3), 1140-1154. <https://doi.org/10.1016/j.ejor.2006.12.004>
3. Chase Jr, C. W. (2014). Innovations in Business Forecasting: Predictive Analytics. *Journal of Business Forecasting*, 33(2).
4. Choi, T. M., Wallace, S. W., & Wang, Y. (2018). Big data analytics in operations management. *Production and operations management*, 27(10), 1868-1883. <https://doi.org/10.1111/poms.12838>
5. Dubey, R., Gunasekaran, A., Childe, S. J., Blome, C., & Papadopoulos, T. (2019). Big data and predictive analytics and manufacturing performance: integrating institutional theory, resource-based view and big data culture. *British Journal of Management*, 30(2), 341-361. <https://doi.org/10.1111/1467-8551.12355>
6. Dubey, R., Luo, Z., Gunasekaran, A., Akter, S., Hazen, B. T., & Douglas, M. A. (2018). Big data and predictive analytics in humanitarian supply chains: Enabling visibility and coordination in the presence of swift trust. *The International Journal of Logistics Management*, 29(2), 485-512. <https://doi.org/10.1108/IJLM-02-2017-0039>
7. Fosso Wamba, P. S. (2017). Big data analytics and business process innovation. *Business Process Management Journal*, 23(3), 470-476. <https://doi.org/10.1108/BPMJ-02-2017-0046>
8. Helmini, S., Jihan, N., Jayasinghe, M., & Perera, S. (2019). Sales forecasting using multivariate long short term memory network models. *PeerJ PrePrints*, 7, e27712v1.
9. Ivanov, D., Dolgui, A., & Sokolov, B. (2019). The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. *International journal of production research*, 57(3), 829-846. <https://doi.org/10.1080/00207543.2018.1488086>

10. Ivanov, D., & Dolgui, A. (2021). A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. *Production Planning & Control*, 32(9), 775-788.
<https://doi.org/10.1080/09537287.2020.1768450>
11. Ivanov, D. (2024). Transformation of supply chain resilience research through the COVID-19 pandemic. *International Journal of Production Research*, 62(23), 8217-8238.
<https://doi.org/10.1080/00207543.2024.2334420>
12. Ivanov, D. (2020). Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case. *Transportation Research Part E: Logistics and Transportation Review*, 136, 101922.
<https://doi.org/10.1016/j.tre.2020.101922>
13. Jahan, M. A., Naife, S. A., Saha, A. K., & Mridha, M. F. (2023). AI in supply chain risk assessment: A systematic literature review and bibliometric analysis. *arXiv preprint arXiv:2401.10895*.
14. Kraus, M., Feuerriegel, S., & Oztekin, A. (2020). Deep learning in business analytics and operations research: Models, applications and managerial implications. *European Journal of Operational Research*, 281(3), 628-641. <https://doi.org/10.1016/j.ejor.2019.09.018>
15. Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). Statistical and Machine Learning forecasting methods: Concerns and ways forward. *PLoS one*, 13(3), e0194889.
<https://doi.org/10.1371/journal.pone.0194889>
16. Nikolopoulos, K., Punia, S., Schäfers, A., Tsinopoulos, C., & Vasilakis, C. (2021). Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions. *European journal of operational research*, 290(1), 99-115.
<https://doi.org/10.1016/j.ejor.2020.08.001>
17. Saberi, S., Kouhizadeh, M., Sarkis, J., & Shen, L. (2019). Blockchain technology and its relationships to sustainable supply chain management. *International journal of production research*, 57(7), 2117-2135. <https://doi.org/10.1080/00207543.2018.1533261>
18. Shen, B., Choi, T. M., & Minner, S. (2019). A review on supply chain contracting with information considerations: information updating and information asymmetry. *International Journal of Production Research*, 57(15-16), 4898-4936. <https://doi.org/10.1080/00207543.2018.1467062>
19. Ugbebor, F. O., Adeteye, D. A., & Ugbebor, J. O. (2024). Predictive analytics models for SMEs to forecast market trends, customer behavior, and potential business risks. *Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online)*, 3(3), 355-381.
<https://doi.org/10.60087/jklst.v3.n3.p355-381>
20. Wang, G., Gunasekaran, A., Ngai, E. W., & Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. *International journal of production economics*, 176, 98-110. <https://doi.org/10.1016/j.ijpe.2016.03.014>